Parameters |
Yes |
The parameters to control training (1xa row vector, a<=11). This row vector must consist of the following elements. - (1) Kernel Type: (default=2).
- (0) Linear
- (1) Polynomial: Gamma*(<X(:,i),X(:,j)>+Coefficient)^Degree
- (2) RBF: (exp(-Gamma*|X(:,i)-X(:,j)|^2))
- (3) Sigmoid: tanh(Gamma*<X(:,i),X(:,j)>+Coefficient)
- (2) Degree: (default=3).
- (3) Gamma: If the input value is zero, Gamma will be set to 1.0 /(max_pattern_dimension). Otherwise, Gamma will remain unchanged in the function (default=1).
- (4) Coefficient: (default=0).
- (5) C: Cost of constraint violation for C-SVC, epsilon-SVR, and nu-SVR (default=1).
- (6) Cache: Space to hold the elements of K(<X(:,i),X(:,j)>) matrix (default=40MB).
- (7) epsilon: tolerance of termination criterion (default=0.001).
- (8) SVM Type (default=0)
- (0) C-SVC
- (1) nu-SVC
- (2) one-class SVM
- (3) epsilon-SVR
- (4) nu-SVR
- (9) nu: nu of nu-SVC, one-class SVM, and nu-SVR (default=0.5).
- (10) loss tolerance: epsilon in loss function of epsilon-SVR (default=0.1).
- (11) shrinking: use shrinking heuristics. (default=1<yes>).
|